Automated, Microwave Assisted Alkene Synthesis via

Wittig Reaction: Unattended Library Synthesis on

Chemspeed SWAVE Synthesizer

Julien Gros, Chemspeed Technologies, Augst, Switzerland

General

The Wittig reaction is an efficient method for alkene synthesis, which can be completed up to ten times faster via microwave irradiation compared to conventional heating.

Objective

- unattended, automated synthesis Wittig reaction in 24 vials on the SWAVE.
- Compare the reactivity of different alkyl halides and aldehydes.
- Assess the existence of a "cooling while heating (cwh) effect".

Reaction sketch

$$PPh_3 + R_1-CH_2-Br + R_2-CHO \xrightarrow{K_2CO_3} R_1-CH=CH-R_2$$

CH₃

Experimental Set-Up

- 3 aldehydes x 2 alkyl halides 6 compounds
- Cooling while heating on / off 12 samples
- Each sample duplicated 24 samples
- Automated sequential workflow:
 - Precise* dispensing of solid and liquid reagents
 - Cap, crimp, transport vial to microwave
 - Heat for 5 min at 150°C with magnetic stirring
 - Prepare next reaction mixture while heating
 - Transport vial back from microwave to rack and transport next vial to microwave
 - Decap all vials at the end of the application

*Examples:

	Target amount	Actual dosing range	
Aldehyde 2	89.5 mg	89.7 - 91.0 mg	
PPh ₃	393.4 mg	393.1 - 394.6 mg	

Chemspeed SWAVE synthesizer

Results

- All samples were analysed by LC/MS and yields determined by the internal standard method.
- The average yield (%) of every two replicates is reported in the following table.

	Alk. hal. 1 cwh off	Alk. hal. 2 cwh off	Alk. hal. 1 cwh on	Alk. hal. 2 cwh on
Aldehyde 1	63	86	61	84
Aldehyde 2	60	72	63	68
Aldehyde 3	51	63	57	61

- Bromoacetate (alk. hal. 2) is more active than benzyl bromide (alk. hal. 1): the nucleophilic substitution of Br by PPh₃ is indeed facilitated by the α -carbonyl group.
- Lower yields are obtained with Aldehyde 3 compared to the other aldehydes, which can be explained by - I and -
- Cooling while heating doesn't have any significant effect.

Conclusion

Microwave assisted synthesis of 24 samples via Wittig reaction was successfully automated and performed in 4 hours using only 1/16th of the vial capacity of the SWAVE.

Results are in accordance with literature and theory [1].

References

[1] www.biotagepathfinder.com - Wittig Olefin Synthesis

Sole Distributor in China and Hong Kong: NIKYANG Enterprise Limited

Shanghai • 86-21 6351 1828

info@nikyang.com

Guangzhou • 86-20 8329 2451 • 86-10 6527 8522

www.nikyang.com

